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Even as the study of plant genomics rapidly develops through the use of high-throughput

sequencing techniques, traditional plant phenotyping lags far behind. Here we develop a high-

throughput rice phenotyping facility (HRPF) to monitor 13 traditional agronomic traits and

2 newly defined traits during the rice growth period. Using genome-wide association studies

(GWAS) of the 15 traits, we identify 141 associated loci, 25 of which contain known genes

such as the Green Revolution semi-dwarf gene, SD1. Based on a performance evaluation of the

HRPF and GWAS results, we demonstrate that high-throughput phenotyping has the potential

to replace traditional phenotyping techniques and can provide valuable gene identification

information. The combination of the multifunctional phenotyping tools HRPF and GWAS

provides deep insights into the genetic architecture of important traits.
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T
he advent of next-generation sequencing technology has
had a major impact on genomics in a short period of time1.
However, phenomics, a new discipline involving the

characterization of the full set of phenotypes of a given species,
still lags far behind genomics2. Traditional phenotyping tools,
which inefficiently measure a limited set of phenotypes, have
become a bottleneck in functional genomics and plant breeding
studies3. The use of multidisciplinary techniques, such as novel
imaging sensors, image analysis and robotics, has enabled the
development of high-throughput and large-scale noninvasive
phenotyping infrastructures4,5. In previous decades, the key
questions of genomics involved why and how to sequence
genomes; now, we are facing new challenge: phenomics2.

There is a large gap between the present linear increase in
global food production and the predicted demand6. Rice (Oryza
sativa landrace) is one of the most important food crops
worldwide and has served as a model plant with many
advantages, including its abundant natural variation7. In recent
years, genome-wide association studies (GWAS) using high-
throughput sequencing technology have been conducted to
dissect the genetic architecture of important traits exhibited by
rice8–11. In GWAS, traditional phenotyping is important but
laborious, and progress in phenotyping technologies is required
to accelerate genetic mapping and gene discovery12,13.

In the present study, we develop a high-throughput rice
phenotyping facility (HRPF) that is able to elucidate traits related
to morphology, biomass and yield during the rice growth period
and after harvest. Using a combination of HRPF and GWAS, we
demonstrate that high-throughput phenotyping has the potential
to replace traditional phenotyping and serves as a novel tool for
studies of plant genetics, genomics, gene characterization and
breeding.

Results
Rice automatic phenotyping and yield traits scorer. To enable
high-throughput and automatic phenotypic screening of rice
germplasm resources and populations throughout the growth
period and after harvest (Fig. 1a), a phenotyping facility was
designed with two main sections: a rice automatic phenotyping
platform (RAP; Fig. 1b) and a yield traits scorer (YTS; Fig. 1c).
The RAP, which included greenhouse, transportation and
inspection units, was a highly integrated facility that could
achieve high-throughput screening of rice plants. The inspection
unit of the RAP included two devices: a colour-imaging device
and a linear X-ray computed tomography (CT). The colour
imaging (also called optical imaging) was designed to non-
destructively extract morphology-related traits (plant height,
green leaf area and plant compactness; Fig. 1d) and biomass-
related traits (shoot fresh weight and shoot dry weight; Fig. 1d).
After colour image acquisition and two-dimensional (2D) image
processing, 32 features, including plant height, plant compactness
and other morphological and texture features, were extracted for
each plant. The features were then combined with the manual
measurements of shoot fresh weight, shoot dry weight and green
leaf area of the same rice accessions to generate the best model
for predicting these three traits using feature grouping and
all-subset regression. The linear X-ray CT was used to auto-
matically measure the tiller number as described in our previous
study14.

After harvest, the rice yield-related traits (total spikelet
number, filled grain number, spikelet fertility, yield per plant,
1,000-grain weight and grain shape and size; Fig. 1d) are often
measured by researchers. In this study, we developed an
engineering prototype of the YTS to automatically extract these
traits. The detailed operating procedures of the RAP and YTS

are provided in the Methods section and Supplementary
Videos 1 and 2.

Performance evaluation of the RAP and YTS. The overall
evaluation experiment using the RAP and YTS is described in
Supplementary Fig. 1a. During three critical growth and devel-
opment stages (late tillering stage, late booting stage and milk
grain stage), five phenotypic traits were measured by the RAP and
manual methods. Scatter plots showing manual versus automatic
measurements of the traits are shown in Fig. 2. For all the testing
sets, the R2 and mean absolute percentage error of the five traits
ranged from 0.82 to 0.90 and 5.59 to 13.28%, respectively. As
shown in Supplementary Fig. 1b, when continuously operated
(24 h per day), the total throughput of the RAP was 1,920 pot-
grown rice plants out of a total greenhouse capacity of 5,472 pots
(Supplementary Fig. 1c).

To extract the green leaf area, shoot fresh weight and shoot dry
weight, half of the rice samples were randomly selected as a
training set for model construction, and the prediction perfor-
mance of the model was evaluated using the testing set and cross-
validation. To select effective predictors for these three traits, all
possible regressions were performed using Akaike’s information
criterion, the adjusted coefficient of determination (adjusted R2)
and the prediction error sum of squares (PRESS statistic)15,16.
Four models, including Model A (using area as the indicator,
which is an easily extracted feature), Model AM (using area and
one morphological feature as indicators), Model AT (using area
and one texture feature as indicators) and Model ATM (using
area, one morphological feature, and one texture feature as
indicators), were selected and compared. The best model was
required to perform noticeably better than those using fewer
predictors. The model determination details are shown in
Supplementary Fig. 2 and Supplementary Fig. 3. Supplementary
Table 1 shows the selected models and their measurement
accuracies.

After harvest, 514 accessions (four replicates of each accession)
from rice-core germplasm resources were evaluated with the YTS,
and 68 accessions were randomly selected and measured
manually to estimate the measurement accuracy of the YTS.
The R2 and mean absolute percentage error of the yield traits
were 0.96–0.99 and 0.89–2.52%, respectively. The measurement
accuracies of the YTS are listed in Supplementary Table 1.
Considering the time required to feed spikelets and to retrieve the
filled spikelets, the efficiency of the YTS is B1 min per plant.

GWAS with the RAP and YTS. After establishment of the
phenotyping platform, we performed GWAS across 529 diverse
O. sativa accessions for 15 traits. In contrast to previous related
studies, these traits were measured automatically by the RAP and
YTS instead of performing manual measurements8,9. Using a
Bonferroni correction based on the effective numbers of
independent markers17, the P value thresholds were 1.21E–06
and 6.03E–08 (suggestive and significant, respectively) for the
entire population18. In our study, only the associations that
exceeded the P value thresholds with clear peak-like signals were
considered. With the significance threshold set, we identified 57
loci, including 15 loci associated with four traits measured by the
RAP and 42 loci with five traits measured by the YTS
(Supplementary Data 1). According to the suggestive threshold,
138 associated loci were identified; of these, 49 were associated
with six traits measured by the RAP and 89 were associated with
five yield-related traits (Supplementary Data 1). Manhattan plots
and quantile-quantile plots for the 15 traits at different stages are
shown in Fig. 3 and Supplementary Figs 4–8.

Certain loci were simultaneously detected for different traits.
For example, a lead single nucleotide polymorphism (SNP)
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located at bp 2,578,017 on chromosome 1 was associated with
shoot fresh weight, shoot dry weight and green leaf area at the late
tillering stage. Lead SNPs at 22 associated loci passing the
suggestive threshold for seven traits (plant height, plant
compactness, grain length, grain width, grain length/width ratio,
1,000-grain weight and grain-projected area) and lead SNPs at
another 3 loci with clear peak-like association signals that failed
to pass but were close to the suggestive threshold were linked to
known related genes (Supplementary Note 3). Among these
SNPs, three associated with plant height were linked to SD119–21

(the Green Revolution semi-dwarf gene), Hd122 and OsGH3-223,
which were previously reported to affect plant height; one
associated with plant compactness, a new morphological trait,
was linked to Hd121. For yield-related traits, lead SNPs at 21
associated loci were close to GS324,25, qSW526, TH127, MADS2928,
DST29 and OsPPKL330, genes that are known to regulate grain
size or yield in rice. In addition, a large number of associated loci
had not been previously reported (Supplementary Note 4;
Supplementary Tables 13 and 14).

Comparison of GWAS results from three phenotyping methods.
In the RAP measurements, after the raw features were extracted,
optimized models were chosen to infer shoot fresh weight, shoot
dry weight and green leaf area (Supplementary Fig. 3). To eval-
uate the performance of the RAP with regard to loci identification
for the three traits, we compared the RAP measurement, the
manual measurement and the raw measurement. The raw mea-
surement is the projected area calculated by the number of
foreground pixels, which is easily extracted without modelling.
We conducted GWAS for the three traits using these different
measurement methods (Fig. 4d; Supplementary Table 15). With
the suggestive P value thresholds adopted, 12 and 15 associated
loci were detected by manual and RAP measurements, respec-
tively. For the raw measurements, however, only two associated

loci were detected. For the three traits, 8 of 12 loci detected by
manual measurement were also detected by the RAP, whereas
only one locus was detected by the raw measurement. We used
the GWAS results for the three traits at the late booting stage as
an illustration to provide a detailed comparison (Fig. 4). On the
basis of Manhattan plots, the GWAS results of the three traits
measured by the RAP were consistent with those obtained by
manual measurement, whereas the raw measurements of shoot
fresh weight and green leaf area failed to detect any associated
loci. As shown in Supplementary Table 15, among the three
associated loci detected by manual measurement, two were also
detected by the RAP, whereas no loci were detected by raw
measurement. Detailed information comparing Manhattan and
quantile-quantile plots of the four traits at other stages is pro-
vided in Supplementary Figs 4–8.

Comparison of rice accessions for two new traits. In addition to
the traditional agronomic traits, new traits, including plant
compactness and grain-projected area, can be extracted by the
RAP and the YTS, respectively. Plant compactness reflects plant
density and plant architecture, and a more detailed description of
plant compactness is provided in the Supplementary Note 2. As
shown in Fig. 5a,c, the plants became more compact and the
leaves became more upright with increases in plant compactness.
Plant compactness provided meaningful information on plant
architecture in addition to the commonly recognized traits (such
as plant height, tiller number and green leaf area) (Supplementary
Fig. 9). This was also the reason that plant compactness was
chosen to improve the biomass and leaf area prediction. Seven
and four loci were associated with plant compactness at the late
booting stage and the milk grain stage, respectively (shown in
Fig. 5b,d; Supplementary Data 1). Grain-projected area can be
effectively extracted by the YTS and overcomes the limitations
inherent to the manual measurement of grain size (Fig. 5e).
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Figure 1 | Combination of the HRPF (RAP and YTS) and genome-wide association study (GWAS). To automatically screen the rice-core germplasm

resource throughout the growth period (a), the entire HRPF was designed with two main elements: a rice automatic plant phenotyping device (RAP, b)

and a YTS (c). These novel phenotyping tools were able to extract not only the traditional agronomic traits but also several novel phenotypic traits

(such as plant compactness and grain-projected area). After the rice phenotypic traits (d) were extracted with the RAP and YTS, new loci were dissected

using GWAS (e). *New traits are those that cannot be defined and extracted using traditional measurement techniques.
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Figure 3 | Genome-wide association studies of five traits at the late booting stage measured by the RAP and five yield-related traits measured by

the YTS. Manhattan plots (left) and quantile-quantile plots (right) for shoot fresh weight (a), plant height (b), tiller number (c), green leaf area (d) and

plant compactness (e) measured by the RAP, and grain length (f), grain width (g), grain length/width ratio (h), 1,000-grain weight (i) and grain-projected

area (j) measured by the YTS. The sample sizes are 402 for the five traits measured by RAP (a–e), and the sample sizes are 514 for five yield traits

measured by YTS (f–j). The P values are computed from a likelihood ratio test with a mixed-model approach using the factored spectrally transformed

linear mixed models (FaST-LMM) programme. For Manhattan plots, � log10 P values from a genome-wide scan are plotted against the position

of the SNPs on each of 12 chromosomes, and the horizontal grey dashed line indicates the genome-wide suggestive threshold (P¼ 1.21� 10� 6).

For quantile-quantile plots, the horizontal axis shows � log10-transformed expected P values, and the vertical axis indicates � log10-transformed

observed P values. The names of known related genes are shown above the corresponding association peaks.
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Traditionally, grain size, which is one of the key component traits
for grain yield, is evaluated based on grain length and width.
Grain-projected area is a 2D projected image of grain and is a
composite trait reflecting both the grain length and width. Several
known loci associated with grain size, such as GS324,25,
MADS2928 and TH127, and 24 new loci were detected with
grain-projected area (shown in Fig. 5f; Supplementary Data 1).

Discussion
For biomass (shoot fresh weight and shoot dry weight)
prediction, noticeable improvement was achieved by adding
morphological features or texture features to the model. Model
AM generally performed better than Model AT, with the
exception of shoot fresh weight at the late tillering stage. This
finding indicated that morphological features were more
significant in predicting rice biomass than texture features. The
reason that Model AT outperformed Model AM in predicting
fresh weight at the late tillering stage may be that the overlap was
not significant and the influence of specific organ weight exceeded
that of the overlap. After booting, the overlap was more
influential. Except for dry weight prediction at the late booting
stage, Model ATM showed no noticeable improvement in
performance over Model AM. This was because differences in
growth status among individual plants during the late booting
stage are larger than that during the other three growth periods.
Similar conclusions were observed for green leaf area prediction.
Noticeable improvement was achieved by adding morphological

features or texture features to the model. In addition, Model AM
generally performed better than Model AT. The colour of
panicles is very similar to that of leaves; thus, the extracted
regions of images included both panicles and leaves. To address
this problem, a texture feature was added to the model to help
reflect the variation and the distribution of the grey level in the
image. The addition of the texture feature significantly improved
the predictive performance of the model.

From the comparison of the GWAS results with the three
different phenotyping methods, we found that the RAP provided
a relatively more complete representation than manual measure-
ments in dissecting genetic architecture, and that raw measure-
ment did not have sufficient power to study relatively complex
traits such as shoot fresh/dry weight and green leaf area.
Compared with the use of only the original features, the
optimized model plus the original features will benefit the
dissection of the genetic architecture of complex traits. Moreover,
eliminating the G�E effects was the first and key step in our
phenotyping experiment. All the rice accessions were planted in
the greenhouse under the same conditions, and each pot was
loaded with equivalent soil and fertilizer, as shown in
Supplementary Video 1. Eliminating some outliers in the
phenotypic data was another key pre-processing step before
GWAS analysis. The improvement after eliminating the outliers is
shown in Supplementary Fig. 10.

Although genomics has been advancing very rapidly, tradi-
tional plant phenotyping lags far behind current genotyping
techniques such as sequencing. To relieve this bottleneck, our
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by the raw features and the selected models (shown in Supplementary Fig. 3). The raw measurement is the projected area calculated by the number of

foreground pixels, which is easily extracted without modelling. Manhattan plots for shoot fresh weight (a), shoot dry weight (b) and green leaf area

(c) using manual measurement (left), RAP measurement (middle) and raw measurement (right; the projected area was calculated by the number of

foreground pixels) at the late booting stage. (d) Blue bars indicate associated loci detected by manual measurement. Red bars and green bars indicate

specific loci detected by RAP measurement and raw measurement, respectively. The sample sizes of all the three traits are 402. The P values are computed

from a likelihood ratio test with a mixed-model approach using the factored spectrally transformed linear mixed models (FaST-LMM) programme. For

Manhattan plots, � log10 P values from a genome-wide scan are plotted against the position of the SNPs on each of 12 chromosomes, and the horizontal

grey dashed line indicates the genome-wide suggestive threshold (P¼ 1.21� 10�6).
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work describes a combination of high-throughput phenotyping
and GWAS to unlock genetic information coded in the rice
genome that controls complex traits and demonstrates the
feasibility of replacing laborious manual phenotyping with
objective, efficient and non-destructive phenotyping tools such
as an HRPF. Our study also demonstrates that for complex traits
(such as shoot fresh/dry weight and green leaf area), the RAP
better dissected the gene architecture of phenotypic traits than
did the raw measurement of these traits. In addition to the
traditional traits identified by manual measurement, novel traits
(such as plant compactness and grain-projected area, which have
obvious implications for planting density and yield) can be
specifically phenotyped using the HRPF. With appropriate
modifications to image analysis, we anticipate that the combina-
tion of the HRPF and GWAS can be used for a wide spectrum
of other plant species to determine genetic architecture and
provide insights into basic biological processes. As a replacement
for traditional phenotyping, the HRPF represents a novel tool that
can facilitate major advances in plant functional genomics and
crop breeding.

Methods
Plant material and experiment design. In our study, 533 O. sativa landrace and
elite accessions were genotyped (Supplementary Note 5). The basic accession
information is shown in Supplementary Data 2. Paired-end 90-bp reads were
obtained using the Illumina HiSeq 2000 platform and covered B1 Gb of the rice
genome for each of the 533 accessions after removing adapter contamination and
low-quality reads. These sequence reads were aligned to the rice reference genome
(the assembly release version 6.1 of genomic pseudomolecules of japonica cv.
Nipponbare was downloaded from Michigan State University (http://rice.-
plantbiology.msu.edu/)) to build the consensus genomic sequence of each acces-
sion, and SNP identification was based on the discrepancies between the consensus
sequence and the reference genome. Among these accessions, three with severe
heterozygosity and one with a low mapping rate (10%) were excluded from the
subsequent analysis. For the missing genotype imputation, the linkage dis-
equilibrium-k-nearest neighbor (LD-KNN) algorithm was used instead of the KNN
algorithm, which has been previously reported8. The detailed procedure of genome
sequencing, alignment, genotype calling and missing genotype imputation was
described in a previous study31. The experimental design used to acquire the
15 phenotypic traits for the GWAS and to evaluate the measurement accuracy
of the RAP and the YTS throughout the rice growth stages is shown in
Supplementary Fig. 1a.

Operation of the RAP. As shown in Supplementary Video 1 and Supplementary
Fig. 1b, when the inspection task starts, the RAP work flowchart includes the

Plant compactness at late booting stage*

PC6=0.351 PC6=0.206 PC6=0.063

PC6=0.318 PC6=0.203 PC6=0.052

Plant compactness at milk grain stage*

Grain projected area*

10 mm 10 mm 10 mm

GPA=
1634

GPA=
1084

GPA=
662

–l
og

10
(P

)
–l

og
10

(P
)

–l
og

10
(P

)

8

6

4

2

0

1 3 5
Chromosome

Hd1

Expected –log10(P)
0 1 2 3 4 5 6 77 9 11

O
bs

er
ve

d 
–l

og
10

(P
) 6

4

2

0

8

6

4

2

0

8

12

10

6

4

2

0

8

12

10

6

4

2

0

1 3 5
Chromosome

TH1MADS29 GS3

Expected –log10(P)
0 1 2 3 4 5 6 77 9 11

Chromosome Expected –log10(P)
70 1 2 3 4 5 61 3 5 7 9 11

O
bs

er
ve

d 
–l

og
10

(P
)

O
bs

er
ve

d 
–l

og
10

(P
)

6

4

2

0

Figure 5 | Comparison of rice accessions exhibiting different plant compactness values and grain-projected areas. Representative rice accessions

exhibiting different plant compactness values at late booting stage (a), different plant compactness values at milk grain stage (c), and the grain-projected

area (e). Manhattan plots (left) and quantile-quantile plots (right) for plant compactness at late booting stage (sample size¼402) (b), plant compactness

at milk grain stage (sample size¼ 269) (d), and grain-projected area (sample size¼ 514) (f). The P values are computed from a likelihood ratio test with a

mixed-model approach using the factored spectrally transformed linear mixed models (FaST-LMM) programme (P¼ 1.21� 10�6). *New traits are those

that cannot be defined and extracted using traditional measurement techniques.
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following steps: (1) one group (24 pot-grown rice plants; G1) is transported to the
industrial conveyor via an automated guided vehicle; (2) the 24 rice plants are
transported to the inspection unit; (3) the 24 rice plants are continuously screened
with the X-ray CT device and colour-imaging device, while another group (G2) is
delivered to the conveyor; and (4) after all of the initial 24 rice plants are inspected,
the next group (G2) is transported to the inspection unit, and the first group (G1)
is transported back to the greenhouse with the automated guided vehicle. The
inspection unit workstation, with control software developed using LabVIEW
8.6 (National Instruments, USA), was designed for image acquisition, image
processing, trait storage and communication with a programmable logic
controller. The main specifications of the RAP inspection unit are shown in
Supplementary Table 12, and additional details of the X-ray CT were reported
in our previous work14.

Operation of the YTS. As shown in Supplementary Video 2, the threshed
spikelets were placed into the electrovibrating feeder, and the feeder sent the
spikelets onto the first conveyor. The monochrome line-array camera captured
images of the grains, and the total spikelet number was determined. The spikelet
then passed through a wind separator, and the unfilled spikelets were blown away.
The filled spikelets were delivered to the second conveyor, and another mono-
chrome line-array camera acquired the images from which the filled spikelet
number, spikelet fertility, grain length, grain width, grain length/width ratio and
grain-projected area were obtained. After the filled spikelets were collected using
the auto-weighing balance, traits including yield per plant and 1,000-grain weight
were calculated and recorded. The key components of the YTS are shown in the
seed-evaluation accelerator (SEA) inspection unit of our previous work32.

Extraction of phenotypic traits by the RAP and YTS. The specified imaging
techniques used in the RAP and YTS are shown in Supplementary Table 17. For
each plant, after 12 side-view colour images and 1 X-ray sinogram image were
captured and analysed, 33 features, including projected area (A), 25 morphological
features and 7 texture features, were extracted (Supplementary Fig. 2). As shown in
Supplementary Fig. 3, after manual green leaf area or biomass measurements were
obtained, several models were built and the best models were chosen for prediction
of the green leaf area or biomass. More details about the feature extraction and
model selection processes can be found in Supplementary Tables 2–11 and
Supplementary Notes 1–2.

Genome-wide association study. In our association panel containing 529
accessions, a total of 4,358,600 SNPs (minor allele frequency Z0.05; the number of
accessions with minor alleles Z6) were used in our GWAS for 15 traits. A mixed-
model approach was implemented using the factored spectrally transformed linear
mixed models (FaST-LMM) programme33 with genetic similarities used to estimate
random effects. The genetic similarities were defined as the identity genotype
proportion of 188,165 evenly distributed random SNPs across the entire rice
genome for each pair of individuals34. The effective number of independent
markers (N) was calculated using the GEC software tool17 (Supplementary
Table 16). Suggestive (1/N) and significant (0.05/N) P value thresholds were set to
control the genome-wide type 1 error rate17,18,35. The P value thresholds were
1.21E–06 and 6.03E–08 (suggestive and significant, respectively) for the entire
population. The LD statistic r2 based on haplotype frequencies was calculated using
Plink36. To identify independent lead SNPs of association signals, SNPs passing the
P value threshold were further clumped to remove the dependent SNPs caused
by LD (r240.25) using the clumping function in Plink36,37.
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