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a b s t r a c t

Spikelets per panicle and grains per panicle (also known as filled spikelets per panicle), directly contribut-
ing to rice yield, are two imperative traits that need to be evaluated in yield-related research. Current
determination of total spikelet number and filled spikelet number are generally measured manually,
which is tedious and subjective. This paper proposes a new method of counting total spikelets and filled
spikelets simultaneously, based on automatic discrimination of filled and unfilled spikelets by combining
visible light imaging and soft X-ray imaging. Visible light imaging was applied to measure the projected
area of the spikelet hull, while soft X-ray imaging yielded the projected area of the inner brown rice
oft X-ray imaging
isible light imaging

kernel. The filling rate, defined as the area ratio of rice kernel to hull, was used to discriminate the filled
and unfilled spikelets. 29 panicle samples were tested to evaluate the efficiency and accuracy. The results
showed that the counting efficiency was approximately 2000 spikelets/min. The root mean squared error
(RMSE) was 0.42 for total spikelet number and 0.77 for filled spikelet number. The mean absolute per-
centage errors (MAPE) were 0.22% and 0.80% for each, respectively. The method shows great potential in
improving the efficiency of trait evaluation in plant breeding and genetic research, as well as serving for
crop phenomics.
. Introduction

High yield has been a major breeding target in cereals, includ-
ng rice (Zhang, 2007; Wang et al., 2008) which is the staple
ood for approximately half of the world’s population (Lian et al.,
005). Yield of a rice plant is determined by the product of grain
eight, number of grains per panicle and number of panicles per
lant (Xing and Zhang, 2010). Number of grains per panicle, also
alled filled spikelets per panicle (Yoshida, 1981), and spikelets
er panicle are two key traits in rice research, for example yield-
elated quantitative-trait-loci analysis (Xiao et al., 1998; Thomson
t al., 2003; Tian et al., 2006) and stress-tolerance research (Bohra
nd Doerffling, 1993; Prasertsak and Fukai, 1997; Yang et al.,
001).

To obtain the number of spikelets and filled spikelets,
esearchers usually depend on manual counting, which is time-
onsuming and labor-intensive. The water-selection method, in

hich the sinking spikelets are regarded as filled spikelets, is a
opular manual method to separate filled spikelets from unfilled
pikelets (Ying et al., 1998; Yang et al., 2000). Alternatively, the
ind-selection method uses a seed blower to discriminate filled

∗ Corresponding author. Tel.: +86 27 8779 2033; fax: +86 27 8779 2034.
E-mail address: qianliu@mail.hust.edu.cn (Q. Liu).

168-1699/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.compag.2010.11.004
© 2010 Elsevier B.V. All rights reserved.

and unfilled spikelets (Tirol-Padre et al., 1996; Bueno and Lafarge,
2009). After the separation, either by water-selection method
or wind-selection method, the filled and unfilled spikelets can
be counted. However, both manual methods give subjective and
inconsistent results. Therefore, it is essential to develop an auto-
mated method that can discriminate and count spikelets with more
objective, accurate and consistent measurements.

At present, the automatic seed counting machine, which can
count seeds including spikelets by accumulating photoelectric
pulses generated by a photoelectric switch, are commercially
available. However, instead of discriminating filled and unfilled
spikelets and counting them separately, a typical commer-
cial seed counter only measures the total number of spikelets.
Moreover, the efficiency of the machine is substantially lim-
ited because the spikelets have to pass through the detection
device one by one. For instance, the 801 Model Count-A-
Pak Seed Counter (SEEDBURO Equipment Company, USA)
has a counting speed of approximately 550 seeds per minute
(http://www.seedburo.com/prod lit/categ07/CountAPak07lit.pdf).
In addition, the photoelectric switch fails to discriminate impu-

rities from spikelets. To obtain both filled spikelet number and
total spikelet number, the user has to manually separate filled
and unfilled spikelets before counting. Therefore, there is an
urgent need for a method that can simultaneously count filled
spikelet number and total spikelet number without need for

dx.doi.org/10.1016/j.compag.2010.11.004
http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag
mailto:qianliu@mail.hust.edu.cn
http://www.seedburo.com/prod_lit/categ07/CountAPak07lit.pdf
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Table 1
Main characteristics of the line-scan X-ray detector.

Main characteristics X-scan 0.4f3-205

X-ray tube voltage range (kV) 20–160
Scintillator material GOS/CWO
Number of pixels 768
Pixel pitch (mm) 0.4
Pixel height (mm) 0.6
Pixel width (mm) 0.3
L. Duan et al. / Computers and Elect

he time-consuming manual separation of filled and unfilled
pikelets.

Machine vision has advantages in accuracy, consistency and
bjectivity, and thus has been widely used in the grain industry
Crowe et al., 1997; Wan et al., 2002; Neethirajan et al., 2007a;
enora et al., 2009). Visible light imaging is one of the popular imag-

ng techniques in machine vision to obtain the external appearance
f grains. Prior studies by Zayas et al. (1989) used visible light
mages to discriminate wheat from non-wheat components. Luo
t al. (1999) developed a color machine vision system to identify
ealthy and six types of damaged kernels. Manickavasagan et al.
2008) established a machine vision system with a monochrome
amera to identify eight western Canadian wheat classes. However,
isible light imaging cannot penetrate opaque objects and thus is
ot capable of revealing internal structures. Unlike visible light,
oft X-rays with electromagnetic wavelengths ranging from 1 to
00 nm (Neethirajan et al., 2007b) have a relatively greater pene-
ration, and thus reveal the internal density distribution of seeds
ith high contrast. Soft X-ray imaging has been widely applied

o detect internal damage and infestation in wheat kernels (Haff
nd Slaughter, 2004; Karunakaran et al., 2004; Fornal et al., 2007).
hese studies have utilized high performance X-ray systems and
cquired images under static situation (both X-ray system and
rains are motionless) to generate good quality grain images with
igh contrast and signal to noise ratio (SNR). During real-time imag-

ng of moving grains (line-scan imaging), however, it is difficult
o get high quality X-ray image due to low X-ray attenuation by
pikelets.

The degree of filling of a spikelet is variable. In this study, the pro-
ected area ratio of brown rice kernel, hereafter termed rice kernel,
o spikelet hull, termed filling rate (FR), is utilized as an indicator
f the degree of filling. Visible light imaging can measure the pro-
ected area of spikelet hull, whereas cannot obtain the projected
rea of rice kernel due to the fact that visible light cannot penetrate
he opaque spikelet hull. Ideally, the X-ray imaging can simultane-
usly obtain both the projected area ratio of a rice kernel and the
ull area if the contrast and SNR of the X-ray image were sufficiently
igh. However, spikelet has a very low attenuation for X-ray, even

ower than several commercial conveyor materials such as cotton
anvas, nylon and PVC. Consequently, it is hard to generate a high
uality X-ray image in line-scan imaging. In addition, a typical high-
erformance X-ray system costs about three times more than a

ow-performance system. Moreover, high resolution is needed for
istinguishing the thin spikelet hull, which will either decrease the
eld of view or require an even more expensive X-ray system with
detector of larger size. To overcome above difficulties, bi-modal

maging is deployed in this study to discriminate filled spikelets
nd unfilled spikelets, with visible light imaging acquiring the pro-
ected area of the spikelet hull, while soft X-ray imaging obtains the
rea of the rice kernel.

This paper, to the best of our knowledge, is the first to introduce
nd test an automated machine for simultaneously counting filled
pikelet number and total spikelet number, with no need for the
ime-consuming manual separation of filled spikelets and unfilled
pikelets. The focus of this paper is on the discrimination method
or unfilled spikelets and filled spikelets.

The objective of this work was to explore and demonstrate the
oncept of combining visible light imaging and soft X-ray imag-
ng in automatic discrimination and counting of unfilled and filled
pikelets. The task involved the design of a prototype system for
maging rice on a conveyor belt, the development of a real-time

lgorithm for co-registering X-ray detector and CCD camera, the
evelopment of real-time machine vision algorithms for discrim-

nation of filled spikelets and unfilled spikelets, and the design of
communication interface for displaying the resultant images and
ata.
Maximum scanning speed (mm/s) 800
A/D resolution (bit) 14
Saturation signal/RMS noise >2000

2. Materials and methods

2.1. Sample preparation and manual measurement

29 rice panicle samples were tested to evaluate the accuracy
of the method. Rice panicles were first subjected to a threshing
machine, after which raw materials, mainly comprised of unfilled
spikelets, filled spikelets and small pieces of branches, were col-
lected for testing.

Filled spikelets and unfilled spikelets were separated using the
water-selection method, after which the samples were sun-dried
and counted separately by skilled workers. The total spikelet num-
ber and the filled spikelet number for each panicle were recorded
as reference data.

2.2. Experimental set-up

The implemented prototype consists of a feeding unit, an inspec-
tion unit and a gathering unit, which are described in the following
subsections.

2.2.1. Feeding unit
Spikelets were fed into the inspection machine through a

stainless-steel hopper. A vibratory feeder was used to arrange the
spikelets as a single layer and separate individual spikelet. This step
was instrumental for the subsequent processes, since it facilitated
image analysis. Subsequently, the spikelets were transferred onto
a 250 mm wide where the ellipsoidal spikelets lay flat.

2.2.2. Inspection unit
A line-scan charge coupled device(LCCD) camera (Tapix LCD

2048@9000, TATTILE International Ltd., Italy), equipped with a
28 mm lens (F1.8 EX DG Aspherical Macro, SIGMA, Japan), was
used to acquire a visible-light image with 2000 × 2048 pixel and
the resolution of 0.19 mm/pixel. The camera was controlled by
the computer workstation (HP xw6400, Hewlett-Packard Develop-
ment Company, USA) through a frame grabber card (NI PCI-1426,
National Instruments Corporation, USA) that digitized the images
into 3-color 8-bit files. A line-array LED (BL-494-40-W, Cogstek
Automation Technology Co. Ltd., China; set to 28 V voltage and
1.5 A current) served as the light source of the visible light imaging
system.

The X-ray imaging system was comprised of a fan-beam X-
ray source (T80-1-60, BMEI Co. Ltd., China) and a line-scan X-ray
detector (X-Scan 0.4-205, BMEI Co. Ltd., China). The X-ray source
possessed a focal spot size of about 0.8 mm with an affixed tung-
sten anode. Tube voltage range and tube current range of the X-ray
source were 40–80 kV and 0.2–1 mA, respectively. Details pertain-

ing to the linear-array detector used in the system are shown in
Table 1. The X-ray detector was directly connected to the com-
puter via a USB 2.0 port, which acquired a 16-bit 1000 × 768 pixel
grayscale X-ray image (termed X-ray image), with resolution of
0.36 mm/pixel.
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isolated pixels in the X-ray image were removed by a median filter
ig. 1. Experimental set-up diagram. Both the CCD camera and X-ray detector are
ine-scan devices. The line-scan CCD camera, line-array LED light source and X-ray
ource are placed over the conveyor belt, while the X-ray detector below it.

In order to minimize the X-ray attenuation of the conveyor belt,
loth was chosen as the belt material. Moreover, compared with
ther colors, black cloth can provide a visible light image with
igher contrast, which aided the image processing. The scheme of
he main elements of the machine is shown in Fig. 1. The LCCD cam-
ra, the line-array LED, and the X-ray source were placed over the
onveyor belt, while the X-ray detector is underneath.

A primary limiting factor to improve the spikelet counting effi-
iency was the speed of the X-ray imaging. Higher imaging speed
as a plus in terms of throughput, but the consequence was worse
-ray image quality, which directly affected the identification accu-
acy for filled spikelets. After taking into account both the counting
peed and the identification accuracy, a 10 ms integration time was
hosen for the X-ray detector in the experiments. The conveyor
peed and CCD line rate were adjusted in accordance with X-ray
maging speed, allowing both X-ray detector and CCD camera to
rab undeformed images.

.2.3. Gathering unit
After inspection, spikelets were transferred from the conveyor

y falling into a gathering unit where they were collected and
acked.

.3. Image acquisition

In the beginning of the measurement, the worker pressed a
utton to send a signal to the computer through the serial port,
hich automatically started the conveyor. Meanwhile, the LCCD

amera and X-ray detector were triggered simultaneously for con-
inuous image acquisition. Subsequently, spikelets were inputted
hrough the feeding unit and imaged as they passed through the
nspection unit. Images were acquired and stored using NI-IMAQ
I Library for LabVIEW (National Instruments Corporation, USA).
he red (R) component was extracted from the color image to form
n 8-bit monochromatic grayscale image, as color information was
ot necessary due to the high contrast.

This paper focused on determining the potential of combining
i-modal imaging for discrimination of filled spikelets and unfilled
pikelets. Experiments were carried out to examine accuracy of the
ethod rather than the implemented prototype machine. In order

o eliminate counting errors caused by the conveying equipment,
he spikelets were randomly placed on the conveyor belt manually,
ne panicle at a time. In practical measurements, spikelets were fed
nto the machine through the feeding unit.
.4. Image analysis

The image analysis algorithm flow chat is shown in Fig. 2. The
ain procedure included image segmentation, watershed segmen-
Fig. 2. Image analysis algorithm flow chart.

tation for touching objects, image labeling, image co-registration,
and unfilled and filled spikelets discrimination and counting.

All the image analysis algorithms were programmed using NI
Vision for LabVIEW 8.6 (National Instruments Corporation, USA),
with the exception of distance transformation, grayscale recon-
struction and watershed segmentation algorithm, which were
programmed using C language and compiled into a dynamic-link
library (dll) for LabVIEW calling.

2.4.1. Image segmentation
The image segmentation was carried out after the image cal-

ibration. The aim of image segmentation was to obtain a binary
image (the object points were assigned 1 and the background points
assigned 0) and remove unwanted objects.

The LCCD image was segmented into a binary image using a
fixed threshold. Median filter with a 3 × 3 neighborhood was used
to remove isolated pixels. To further minimize noises, small objects
were removed from segmented images. As area of noises was usu-
ally much smaller than spikelets, objects having area less than one
half of the spikelets were regarded as noises. After small objects
were removed, the length–width ratio was calculated for all objects.
Objects with a length–width ratio larger than five times the aver-
age ratio were reckoned to be unwanted objects which are mostly
small piece of branch.

Image enhancement, more specifically, a linear transformation
was performed to sharpen the contrast of X-ray image by evenly
distributing a given gray-level interval [rangeMin, rangeMax] over
the full gray scale [−32,768, 32,767] (16-bit signed integer). An
automatic local thresholding algorithm, named background cor-
rection algorithm was used for X-ray image segmentation. The
background correction algorithm categorizes a pixel based on the
gray value statistics of its neighboring pixels. A 32 × 32 window
size was used in the algorithm. Similar to the LCCD image analysis,
with a 3 × 3 neighborhood. By comparing the area of objects with
an area threshold, noises were further removed.

More details concerning background correction algorithm may
be found in NI Vision concepts manual (National Instruments Cor-
poration, USA).



L. Duan et al. / Computers and Electronics in Agriculture 75 (2011) 196–203 199

F s; (b) t
i of (d)

2

t
s
f
i

d
(
t
T
t
q
e

2

l
t
l
i
l
v

ig. 3. Watershed segmentation procedure: (a) original binary image of the spikelet
n (b); (d) binary image in (c) after distance transform; (e) grayscale reconstruction

.4.2. Watershed segmentation
In real-time applications, the spikelets were likely to be

ouching, which needed to be further segmented. Watershed
egmentation (Vincent and Soille, 1991), based on a distance trans-
ormation, was applied in this study to segment touching objects
n the image. The detailed procedure was described as follows:

Step 1: Touching objects were discriminated from isolated objects.
Step 2: Distance transformation dist(I), in which gray value of each
pixel in the resultant image is the shortest distance between the
pixel and background (Paglieroni, 1992), was performed on the
image I that contains only touching objects.
Step 3: To minimize the over-segmentation phenomenon of
watershed segmentation algorithm, the distance function dist(I)
was reconstructed from dist(I) − 1 by using a grayscale reconstruc-
tion algorithm (Vincent, 1992, 1993).
Step 4: The inverse of the reconstructed image was calculated.
Step 5: Watershed segmentation algorithm was carried out on the
reconstructed image.

Fig. 3 illustrates the watershed segmentation procedure. A
iscrimination procedure was performed on the binary image
Fig. 3a) to extract the touching kernels (Fig. 3b). Fig. 3c shows
he magnified image for kernels in the boxed region of Fig. 3b.
he two-dimensional Euclidean distance transform of the binary
ouching kernel image was calculated afterwards (Fig. 3d). Subse-
uently, grayscale reconstruction was conducted (Fig. 3e). In the
nd, watershed segmentation was applied (Fig. 3f).

.4.3. Image labeling
To mark each object for matching, the two binary images were

abeled. Each object was labeled according to its position, from top

o bottom and left to right. For instance, the top left object was
abeled as 1. Fig. 4 shows the original image, segmented binary
mage and labeled image for both LCCD and X-ray image. The
abeled image was shown using the pseudo color method for better
isualization. In addition, the total number of spikelets that equals
ouching kernels extracted from (a); (c) magnified image for kernels in the rectangle
; (f) watershed segmentation result.

to the maximum labeling number in the LCCD image was calculated
after image labeling.

2.4.4. Image co-registration
Prior to the experiment, the LCCD and X-ray cameras were co-

registered using a steel plate with a grid of 10 mm spaced dots.
After imaging the plate with both the CCD camera and X-ray sys-
tem, a registration algorithm learned the relative coordinates of
the fields of view of the two imaging systems. This learning phase
of the co-registration was accomplished using NI Vision Assistant
8.6 (National Instruments, USA). Subsequently during the experi-
ments, the registration algorithm interpreted the two images such
that the location of a spikelet hull in the LCCD image corresponded
to the rice kernel of the same spikelet in the X-ray image.

Simple co-registration required that two assumptions were
met: (1) the conveyor ran at an absolutely constant speed, and
(2) the CCD camera and X-ray detector started acquiring images
with exactly the same time delay after an acquisition instruction
was sent. However, in practical measurements, the conveyor speed
fluctuated within a narrow range, and the response time of the CCD
camera and X-ray detector varied slightly among different acqui-
sitions, leading to slight fluctuations (within several pixels) in the
co-registration. Therefore, a registration algorithm that included
the ability to adjust for variations in the conveyor speed and the
time delay after an acquisition request during experiments was
developed based on the simple image co-registration.

For a given rice kernel in the X-ray image, the registration algo-
rithm found its matching spikelet hull in the LCCD image by using
the following procedure:

Step 1: Sobel algorithm was performed to extract the boundary
pixels of a given rice kernel, which were stored in a vector B. Length

of the boundary vector B was calculated and denoted by T.
Step 2: An enumerator vector E was initialized to 0.
Step 3: An index variable t was initialized to 0.
Step 4: The corresponding point in the LCCD image (denoted by
CBt) of a given boundary pixel Bt (t = 1, 2, . . ., T) was determined
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ig. 4. Image processing procedural framework: (a) LCCD original image; (b) X-ray
CCD labeled image; (f) pseudo color image of X-ray labeled image.

by the relative coordinates through simple co-registration. If CBt

had a non-zero pixel value j, the enumerator Ej was incremented
(j = 1,2, . . ., M, where M was the number of objects in the LCCD
image, i.e., total spikelet number).
Step 5: If t was equal to T, the procedure jumped to Step 6. Oth-
erwise, the index t was incremented and the algorithm looped to
Step 4.
Step 6: Let j* be the labeling value of the corresponding spikelet
hull of the given rice kernel such that

∗ = arg max{Ej|j = 1, 2, . . . , M} (1)
Fig. 5 illustrates the procedure of finding the matching spikelet
ull of a rice kernel labeled by i. As shown in the image, Ek is larger
han Eh, thus the spikelet hull labeled by k is deemed as the corre-
ponding spikelet hull of rice kernel i.
al image; (c) LCCD binary image; (d) X-ray binary image; (e) pseudo color image of

Theoretically, all the pixels of a rice kernel can be used to deter-
mine its matching spikelet hull. However, for efficiency reasons,
only boundary points were used in our method.

2.4.5. Unfilled and filled spikelets discrimination and counting
After the matching rice kernel-spikelet hull pairs were found,

the filling rate (FR) of each spikelet was calculated by using the
following equation:

FR = Arearice kernel

Areaspikelet hull
(2)

where Arearice kernel was the projected area of the rice kernel and

Areaspikelet hull was the projected area of its corresponding spikelet
hull.

Specifically, an empty spikelet merely has a spikelet hull with
no rice kernel inside and may appear in the LCCD image, whereas
no matching rice kernel can be found in the X-ray image. In this
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error was 1.56% for total spikelet number measurement, and 2.74%
for filled spikelet number.

The root mean squared error (RMSE, defined by Eq. (3)) was 0.77
for filled spikelet number and 0.42 for total spikelet number. The

Table 2
Spikelets per panicle of 29 panicle samples measured manually versus by the present
method.

No. Number measured
automatically

Number measured
manually

Absolute
error

Relative
error (%)

1 86 87 −1 −1.15
2 96 96 0 0.00
3 92 92 0 0.00
4 87 88 −1 −1.14
5 78 78 0 0.00
6 87 87 0 0.00
7 84 84 0 0.00
8 83 83 0 0.00
9 80 80 0 0.00

10 89 90 −1 −1.11
11 82 82 0 0.00
12 84 84 0 0.00
13 89 89 0 0.00
14 74 74 0 0.00
15 63 63 0 0.00
16 68 68 0 0.00
17 66 66 0 0.00
18 72 72 0 0.00
19 72 72 0 0.00
20 67 67 0 0.00
21 63 64 −1 −1.56
22 77 78 −1 −1.28
23 63 63 0 0.00
24 57 57 0 0.00
Fig. 5. Matching schematic diagram. Boundary points of a rice kernel ar

ase, the area of its matching rice kernel was assigned 0, which was
n agreement with its practical property.

In a subsequent step, the filling rate of each spikelet was com-
ared with a pre-defined threshold. If the filling rate of a spikelet
as larger than the threshold, the spikelet was identified as a filled

pikelet, otherwise it was assigned as unfilled. In the experiments,
he threshold was set as 0.35, according to the preliminary experi-

ents for an optimized performance.
In the end, the algorithm counted the filled spikelet number and

he unfilled spikelet number.

.5. Communication interface

The communication interface is indicated in Fig. 6. The labeled
CCD image and X-ray image, along with the number of filled
pikelets, the number of unfilled spikelets, and the number of total
pikelets, were displayed on the interface. The top-left button indi-
ated whether the CCD camera and X-ray detector were acquiring
mages. The STOP button on the bottom-left corner was used for
topping the machine.

. Results and discussion

.1. Measurement accuracy

29 panicle samples were tested for accuracy of evaluation,
rom which absolute errors, defined as numbers measured using
he present method minus the manually measured numbers, and
elative errors, defined as absolute errors divided by manually mea-
ured numbers, were calculated.

Table 2 illustrates the total spikelet number, which was mea-

ured manually by expert workers and automatically by the present
ethod. Absolute errors for the number of total spikelets were
ithin ±1. The measured results for filled spikelet number are

isted in Table 3. Compared with the measurement of the total
pikelet number, absolute errors of filled spikelet number were a
acted and mapped to the LCCD image to find its corresponding spikelet.

little larger, between −2 and 1. The maximum absolute relative
25 70 70 0 0.00
26 70 70 0 0.00
27 62 62 0 0.00
28 62 62 0 0.00
29 60 60 0 0.00
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Fig. 6. Communication interf

ean absolute percentage errors (MAPE, defined by Eq. (4)) were
.80% and 0.22% for each, respectively.

MSE =

√√√√1
n

n∑
i=1

(Xi.manual − xi.image)2 (3)

APE = 1
n∑∣∣Xi.manual − xi.image

∣∣2

100 (4)

n

i=1
Xi.manual

here xi.manual was the ith manually measured value, xi.image was the
th value measured using the present bi-modal imaging method, and

was the number of samples.

able 3
illed spikelets per panicle of 29 panicle samples measured manually versus by the
resent method.

No. Number measured
automatically

Number measured
manually

Absolute
error

Relative
error (%)

1 71 73 −2 −2.74
2 79 80 −1 −1.25
3 83 82 1 1.22
4 75 76 −1 −1.32
5 71 70 1 1.43
6 79 78 1 1.28
7 73 73 0 0.00
8 76 75 1 1.33
9 74 74 0 0.00

10 71 71 0 0.00
11 76 76 0 0.00
12 73 73 0 0.00
13 78 78 0 0.00
14 65 65 0 0.00
15 58 58 0 0.00
16 60 60 0 0.00
17 60 61 −1 −1.64
18 58 58 0 0.00
19 58 59 −1 −1.69
20 62 62 0 0.00
21 54 55 −1 −1.82
22 63 63 0 0.00
23 57 56 1 1.79
24 50 49 1 2.04
25 62 62 0 0.00
26 61 61 0 0.00
27 56 56 0 0.00
28 55 54 1 1.85
29 53 52 1 1.92
the implemented prototype.

Two main reasons may have led to the larger error in the mea-
surement of filled spikelet number in comparison to the total
spikelet number. First, incorrect discrimination may have occurred
when the degree of filling for a filled spikelet was very close to that
of an unfilled spikelet. Second, due to the low X-ray attenuation
of rice spikelets, the contrast and SNR of X-ray image were rela-
tively low in fast line-scan imaging, making it difficult to extract
the rice kernel area precisely. More accurate measurements would
be achieved if a higher performance X-ray system is used. Unfor-
tunately, a higher performance X-ray system leads to higher cost,
which is not suitable for wide-spread applications. With respect to
the implemented prototype, counting accuracy was slightly larger
due to the extra loss of spikelets caused by the conveying system.

3.2. Measurement efficiency

In order to optimize the measuring speed, images were pro-
cessed in the computer simultaneously while the CCD camera and
X-ray detector were acquiring new images. As image processing
consumed less time than did image acquisition, the measurement
efficiency of the present method was dictated by the speed of image
acquisition.

We assume that the average length and width of a rice spikelet
were 9 mm and 3 mm, respectively. In our experiments, the aver-
age space that a spikelet inhabited was approximately 300 mm2

(11 times its size). Therefore, the number of spikelets/mm2 (Ns)
was 1/300 mm2. The conveyor belt width was W = 250 mm and its
velocity was V = 40 mm/s. Therefore, the number of spikelets pass-
ing through the CCD camera and X-ray detector per second was:

NsVW = (spikelets/300 mm2)(40 mm/s) (250 mm)

= 33.3 spikelets/s (5)

This rate of detection corresponded to 2000 spikelets/min,
which was the rate seen in our experiment. In practical mea-
surements, the efficiency depends on the density of the spikelet
kernels (Ns). If the Ns were increased to 1/108 mm2 (space per

grain = 4 times the area of grain), the rate of detection would be
5556 spikelets/min, which is a reasonable estimate of an optimized
rate of detection. To further enhance efficiency, the conveyor belt
could be broadened or the conveyor speed increased. However,
a wider conveyor belt demands a larger field of view. A higher
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onveyor speed decreases integration time, and therefore leads
o lower SNR and contrast for X-ray image. When attempting to
ncrease the rate of detection, care should be taken to not reduce
he overall accuracy of filled and unfilled spikelets discrimination.

The results illustrate that the combination of visible light imag-
ng and X-ray imaging can count filled spikelet number and total
pikelet number simultaneously and automatically with acceptable
ccuracy. The length, width and other morphological features of
ice spikelets were also acquired at the same time, opening up the
ossibility of including more traits in the prototype. A major limita-
ion of this method is that the measurement efficiency and accuracy
re influenced by the performance of the X-ray detector. Higher
ccuracy and efficiency would be achieved given a higher perfor-
ance X-ray system. In the current prototype, a manual pressing of
control button triggered image acquisition. Future designs could
tilize a photoelectric sensor as an external trigger to automate

mage acquisition.

. Conclusions

This paper demonstrates a new method for simultaneously and
fficiently acquiring the number of filled spikelets, the number
f unfilled spikelets, and the number of total spikelets. Bi-modal
maging using visible light imaging and soft X-ray imaging was
mployed in a method for fast discrimination of filled spikelets
nd unfilled spikelets. This method simultaneously measures filled
pikelet number and total spikelet number without manual sep-
ration of spikelets, which significantly improves the efficiency
f trait evaluation in rice breeding and genetic research. A fully
utomated spikelet counting machine, which is capable of simul-
aneously measuring the filled spikelet number, unfilled spikelet
umber, total spikelet number as well as spikelet dimension (length
nd width), will be developed in the future. Other cereal grains, such
s wheat, will be also used as samples. The newly developed device
ill serve as a tool for phenomics research, which aims to usher

precision agriculture and predictive breeding” (Finkel, 2009).
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